Search results
Results From The WOW.Com Content Network
This failure was ascribed to workmanship and design issues, and related to fine metal particles accumulating in the control rods' housing and interfering with their free movement. [ citation needed ] In addition, later testing found that the reactors have a positive power co-efficient of reactivity (PCR), which was in disagreement with the ...
It was originally known as "HECKE and Manin". After a short while it was renamed SAGE, which stands for ‘’Software of Algebra and Geometry Experimentation’’. Sage 0.1 was released in 2005 and almost a year later Sage 1.0 was released. It already consisted of Pari, GAP, Singular and Maxima with an interface that rivals that of Mathematica.
Vectors and planes in a crystal lattice are described by the three-value Miller index notation. This syntax uses the indices h, k, and â„“ as directional parameters. [4] By definition, the syntax (hkâ„“) denotes a plane that intercepts the three points a 1 /h, a 2 /k, and a 3 /â„“, or some multiple thereof. That is, the Miller indices are ...
The critical point is where the longer bonds (on both the lattice and dual lattice) have occupation probability p = 2 sin (π/18) = 0.347296... which is the bond percolation threshold on a triangular lattice, and the shorter bonds have occupation probability 1 − 2 sin(π/18) = 0.652703..., which is the bond percolation on a hexagonal lattice.
The text is considered a classical treatise on the subject of lattice dynamics, phonon theory, and elasticity in crystalline solids, but excluding metals and other complex solids with order/disorder phenomena. J. D. Eshelby, [1] Melvin Lax, [2] and A. J. C. Wilson [3] reviewed the book in 1955, among several others. [4] [5]
For the base-centered monoclinic lattice, the primitive cell has the shape of an oblique rhombic prism; [1] it can be constructed because the two-dimensional centered rectangular base layer can also be described with primitive rhombic axes.
The crystallographic restriction theorem in its basic form was based on the observation that the rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-fold, and 6-fold. However, quasicrystals can occur with other diffraction pattern symmetries, such as 5-fold; these were not discovered until 1982 by Dan Shechtman. [1]
Assuming the spacing between two ions is a, the potential in the lattice will look something like this: The mathematical representation of the potential is a periodic function with a period a. According to Bloch's theorem, [1] the wavefunction solution of the Schrödinger equation when the potential is periodic, can be written as: