Search results
Results From The WOW.Com Content Network
Neutron stars are usually observed to pulse radio waves and other electromagnetic radiation, and neutron stars observed with pulses are called pulsars. Pulsars' radiation is thought to be caused by particle acceleration near their magnetic poles , which need not be aligned with the rotational axis of the neutron star.
Neutron stars are the collapsed cores of supergiant stars. [1] They are created as a result of supernovas and gravitational collapse, [2] and are the second-smallest and densest class of stellar objects. [3] In the cores of these stars, protons and electrons combine to form neutrons. [2] Neutron stars can be classified as pulsars if they are ...
RX J1856.5−3754 (also called RX J185635−3754, RX J185635−375, and various other designations) is a neutron star in the constellation Corona Australis. At approximately 400 light-years from Earth, it is the closest neutron star discovered to date.
A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. [1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds ...
Scientists have finally identified the progeny of that supernova - an enormously dense object called a neutron star. Two instruments on the James Webb Space Telescope (JWST) that observed the ...
Neutron star: Neutron stars are stellar remnants produced when a star of around 8–9 solar masses or more explodes in a supernova at the end of its life. They are usually produced by stars of less than 20 solar masses, although a more massive star may produce a neutron star in certain cases. [2] 4U 1820-30: 9.1 Pulsar [3] Lich Pulsar (PSR ...
A star in this hypothetical state is called a "quark star" or more specifically a "strange star". The pulsar 3C58 has been suggested as a possible quark star. Most neutron stars are thought to hold a core of quark matter but this has proven difficult to determine observationally. [citation needed]
The main trait that sets magnetars apart from other neutron stars is a magnetic field 1,000 to 10,000 times stronger than an ordinary neutron star's magnetism and a trillion times that of the sun.