When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Brasch et al. 2012 show how a generalized Fibonacci sequence also can be connected to the field of economics. [97] In particular, it is shown how a generalized Fibonacci sequence enters the control function of finite-horizon dynamic optimisation problems with one state and one control variable.

  3. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The term Fibonacci sequence is also applied more generally to any function from the integers to a field for which (+) = + (+).These functions are precisely those of the form () = () + (), so the Fibonacci sequences form a vector space with the functions () and () as a basis.

  4. Overlapping subproblems - Wikipedia

    en.wikipedia.org/wiki/Overlapping_subproblems

    Therefore, the computation of F(n − 2) is reused, and the Fibonacci sequence thus exhibits overlapping subproblems. A naive recursive approach to such a problem generally fails due to an exponential complexity. If the problem also shares an optimal substructure property, dynamic programming is a good way to work it out.

  5. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    The following is a matrix-based approach to generating primitive triples with generalized Fibonacci sequences. [9] Start with a 2 × 2 array and insert two coprime positive integers (q,q′) in the top row. Place the even integer (if any) in the left-hand column.

  6. Fibonacci polynomials - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_polynomials

    In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials .

  7. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    Even though the total number of sub-problems is actually small (only 43 of them), we end up solving the same problems over and over if we adopt a naive recursive solution such as this. Dynamic programming takes account of this fact and solves each sub-problem only once. Figure 2. The subproblem graph for the Fibonacci sequence.

  8. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  9. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...