When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...

  3. Scalar potential - Wikipedia

    en.wikipedia.org/wiki/Scalar_potential

    The fact that the line integral depends on the path C only through its terminal points r 0 and r is, in essence, the path independence property of a conservative vector field. The fundamental theorem of line integrals implies that if V is defined in this way, then F = –∇V, so that V is a scalar potential of the conservative vector field F ...

  4. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    By placing φ as potential, ∇φ is a conservative field. Work done by conservative forces does not depend on the path followed by the object, but only the end points, as the above equation shows. The gradient theorem also has an interesting converse: any path-independent vector field can be expressed as the gradient of a scalar field. Just ...

  5. Conservative force - Wikipedia

    en.wikipedia.org/wiki/Conservative_force

    If the force is not conservative, then defining a scalar potential is not possible, because taking different paths would lead to conflicting potential differences between the start and end points. Gravitational force is an example of a conservative force, while frictional force is an example of a non-conservative force.

  6. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative vector field is always the gradient of a function.

  7. Closed and exact differential forms - Wikipedia

    en.wikipedia.org/wiki/Closed_and_exact...

    In 3 dimensions, an exact vector field (thought of as a 1-form) is called a conservative vector field, meaning that it is the derivative of a 0-form (smooth scalar field), called the scalar potential. A closed vector field (thought of as a 1-form) is one whose derivative vanishes, and is called an irrotational vector field. Thinking of a vector ...

  8. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  9. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    In a conservative vector field this integral evaluates to zero for every closed curve. That means that a line integral between any two points in the field is independent of the path taken. It also implies that the vector field can be expressed as the gradient of a scalar function, which is called a potential. [4]