When.com Web Search

  1. Ad

    related to: diagonals example problems math

Search results

  1. Results From The WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.

  3. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  4. Diagonal - Wikipedia

    en.wikipedia.org/wiki/Diagonal

    The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length .. In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge.

  5. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    In mathematics, an Euler brick, named after Leonhard Euler, is a rectangular cuboid whose edges and face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge lengths are relatively prime.

  6. Space diagonal - Wikipedia

    en.wikipedia.org/wiki/Space_diagonal

    A magic square is an arrangement of numbers in a square grid so that the sum of the numbers along every row, column, and diagonal is the same. Similarly, one may define a magic cube to be an arrangement of numbers in a cubical grid so that the sum of the numbers on the four space diagonals must be the same as the sum of the numbers in each row, each column, and each pillar.

  7. Eight queens puzzle - Wikipedia

    en.wikipedia.org/wiki/Eight_queens_puzzle

    The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century.

  8. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  9. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.