When.com Web Search

  1. Ads

    related to: 3 dimensional figures worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.

  3. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P ( x , y , z , w ) , then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.

  4. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids , prisms (and other polyhedrons ), cubes , cylinders , cones (and truncated cones ).

  5. Outline of geometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_geometry

    3.2 3-dimensional Euclidean geometry. ... Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the ...

  6. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  7. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    A surface is a two-dimensional object, such as a sphere or paraboloid. [55] In differential geometry [53] and topology, [49] surfaces are described by two-dimensional 'patches' (or neighborhoods) that are assembled by diffeomorphisms or homeomorphisms, respectively. In algebraic geometry, surfaces are described by polynomial equations. [54]