Search results
Results From The WOW.Com Content Network
The rotation is completely specified by specifying the axis planes and the angles of rotation about them. Without loss of generality, these axis planes may be chosen to be the uz - and xy-planes of a Cartesian coordinate system, allowing a simpler visualization of the rotation. In 4D space, the Hopf angles {ξ 1, η, ξ 2} parameterize the 3 ...
For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3, the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ, e −iθ.
1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol. 47, issue 04, p. 650 [1] 1962 A. L. MacKay Bravais Lattices in Four-dimensional Space [2] 1964 Patrick du Val, Homographies, quaternions and rotations, quaternion-based 4D point groups
Einstein's concept of spacetime has a Minkowski structure based on a non-Euclidean geometry with three spatial dimensions and one temporal dimension, rather than the four symmetric spatial dimensions of Schläfli's Euclidean 4D space. Single locations in Euclidean 4D space can be given as vectors or 4-tuples, i.e., as ordered lists of numbers ...
If a rotation of Minkowski space is in a space-like plane, then this rotation is the same as a spatial rotation in Euclidean space. By contrast, a rotation in a plane spanned by a space-like dimension and a time-like dimension is a hyperbolic rotation, and if this plane contains the time axis of the reference frame, is called a "Lorentz boost ...
The two rotation planes span four-dimensional space, so every point in the space can be specified by two points, one on each of the planes. A double rotation has two angles of rotation, one for each plane of rotation. The rotation is specified by giving the two planes and two non-zero angles, α and β (if either angle is zero the rotation is ...
Introducing more terminology (but not more structure), Minkowski space is thus a pseudo-Euclidean space with total dimension n = 4 and signature (1, 3) or (3, 1). Elements of Minkowski space are called events. Minkowski space is often denoted R 1,3 or R 3,1 to emphasize the chosen signature, or just M. It is an example of a pseudo-Riemannian ...
Euclidean geometry is consistent with Minkowski's classical theory of relativity. When the geometric projection of 4D properties to 3D space is made, the hyperbolic Minkowski geometry transforms into a rotation in 4D circular geometry.