When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5] The ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Rocket engine - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine

    Rocket technology can combine very high thrust (meganewtons), very high exhaust speeds (around 10 times the speed of sound in air at sea level) and very high thrust/weight ratios (>100) simultaneously as well as being able to operate outside the atmosphere, and while permitting the use of low pressure and hence lightweight tanks and structure.

  5. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    In rocketry, a heavier engine with a higher specific impulse may not be as effective in gaining altitude, distance, or velocity as a lighter engine with a lower specific impulse, especially if the latter engine possesses a higher thrust-to-weight ratio. This is a significant reason for most rocket designs having multiple stages.

  6. Thrust-specific fuel consumption - Wikipedia

    en.wikipedia.org/wiki/Thrust-specific_fuel...

    TSFC or SFC for thrust engines (e.g. turbojets, turbofans, ramjets, rockets, etc.) is the mass of fuel needed to provide the net thrust for a given period e.g. lb/(h·lbf) (pounds of fuel per hour-pound of thrust) or g/(s·kN) (grams of fuel per second-kilonewton). Mass of fuel is used, rather than volume (gallons or litres) for the fuel ...

  7. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...

  8. Propellant mass fraction - Wikipedia

    en.wikipedia.org/wiki/Propellant_mass_fraction

    In a spacecraft, the destination is usually an orbit, while for aircraft it is their landing location. A higher mass fraction represents less weight in a design. Another related measure is the payload fraction, which is the fraction of initial weight that is payload. It can be applied to a vehicle, a stage of a vehicle or to a rocket propulsion ...

  9. Mass ratio - Wikipedia

    en.wikipedia.org/wiki/Mass_ratio

    In aerospace engineering, mass ratio is a measure of the efficiency of a rocket.It describes how much more massive the vehicle is with propellant than without; that is, the ratio of the rocket's wet mass (vehicle plus contents plus propellant) to its dry mass (vehicle plus contents).