Search results
Results From The WOW.Com Content Network
Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test.
The procedures of Bonferroni and Holm control the FWER under any dependence structure of the p-values (or equivalently the individual test statistics). Essentially, this is achieved by accommodating a `worst-case' dependence structure (which is close to independence for most practical purposes).
Thus, The Hochberg procedure is uniformly more powerful than the Holm procedure. However, the Hochberg procedure requires the hypotheses to be independent or under certain forms of positive dependence, whereas Holm–Bonferroni can be applied without such assumptions. A similar step-up procedure is the Hommel procedure, which is uniformly more ...
Tukey’s Test (see also: Studentized Range Distribution) However, with the exception of Scheffès Method, these tests should be specified "a priori" despite being called "post-hoc" in conventional usage. For example, a difference between means could be significant with the Holm-Bonferroni method but not with the Turkey Test and vice versa.
With respect to FWER control, the Bonferroni correction can be conservative if there are a large number of tests and/or the test statistics are positively correlated. [9] Multiple-testing corrections, including the Bonferroni procedure, increase the probability of Type II errors when null hypotheses are false, i.e., they reduce statistical power.
This procedure is often used as a post-hoc test whenever a significant difference between three or more sample means has been revealed by an analysis of variance (ANOVA). [1] The Newman–Keuls method is similar to Tukey's range test as both procedures use studentized range statistics.
Tukey's test is either: Tukey's range test, also called Tukey method, Tukey's honest significance test, Tukey's HSD (Honestly Significant Difference) test;
The new multiple range test proposed by Duncan makes use of special protection levels based upon degrees of freedom.Let , = be the protection level for testing the significance of a difference between two means; that is, the probability that a significant difference between two means will not be found if the population means are equal.