Search results
Results From The WOW.Com Content Network
The gas layers of the troposphere are less dense at the geographic poles and denser at the equator, where the average height of the tropical troposphere is 13 km, approximately 7.0 km greater than the 6.0 km average height of the polar troposphere at the geographic poles; therefore, surplus heating and vertical expansion of the troposphere ...
The troposphere is the lowest layer of the Earth's atmosphere; it starts at the planetary boundary layer, and is the layer in which most weather phenomena occur. The troposphere contains the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator.
The troposphere is thicker in the equator and thinner at the poles, but the global mean of its thickness is around 11 km. Inside the troposphere, the temperature drops approximately linearly at a rate of 6.5 Celsius degrees per km, from a global mean of 288 Kelvin (15 Celsius) on the ground to 220 K (-53 Celsius).
The troposphere is denser than all its overlying layers because a larger atmospheric weight sits on top of the troposphere and causes it to be most severely compressed. Fifty percent of the total mass of the atmosphere is located in the lower 5.6 km (3.5 mi; 18,000 ft) of the troposphere.
Of the vertically developed clouds, the cumulonimbus type is the tallest and can virtually span the entire troposphere from a few hundred metres above the ground up to the tropopause. [33] It is the cloud responsible for thunderstorms. Some clouds can form at very high to extreme levels above the troposphere, mostly above the polar regions of ...
Something “really strange” could indicate that someone somewhere on earth is attempting solar geoengineering: injecting gases or tiny particles into the upper part of the atmosphere to reflect ...
The high-speed polar jet stream typically spins at a height of 5 to 9 miles above the Earth’s surface, in the lower layer of the atmosphere known as the troposphere.
Usually, within the lower atmosphere (the troposphere) the air near the surface of the Earth is warmer than the air above it, largely because the atmosphere is heated from below as solar radiation warms the Earth's surface, which in turn then warms the layer of the atmosphere directly above it, e.g., by thermals (convective heat transfer). [3]