Search results
Results From The WOW.Com Content Network
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
The total derivative / of p with respect to r, for example, gives the sign and magnitude of the reaction of the market price to the exogenous variable r. In the indicated system, there are a total of six possible total derivatives, also known in this context as comparative static derivatives : dp / dr , dp / dw , dp / dI , dq / dr , dq / dw ...
Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function ...
A differentiable function graph with lines tangent to the minimum and maximum. Fermat's theorem guarantees that the slope of these lines will always be zero.. In mathematics, Fermat's theorem (also known as interior extremum theorem) is a theorem which states that at the local extrema of a differentiable function, its derivative is always zero.
A graph edge represents a relationship between two entities, e.g. pairwise interactions or similarity based on comparisons of geometric neighborhoods (for example of pixels in images) or of another feature, with the edge weight encoding the strength of this relationship.
The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.
Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function. The derivative f′(x) of a curve at a point is the slope of the line tangent to that curve at that point. This slope is determined by considering the limiting value of the slopes of the second lines.
The definitions are applied to graphs as follows. If a function (a -cochain) is defined at the nodes of a graph: ,,, … then its exterior derivative (or the differential) is the difference, i.e., the following function defined on the edges of the graph (-cochain):