When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Continuous uniform distribution - Wikipedia

    en.wikipedia.org/.../Continuous_uniform_distribution

    If X has a standard uniform distribution, then by the inverse transform sampling method, Y = − λ −1 ln(X) has an exponential distribution with (rate) parameter λ. If X has a standard uniform distribution, then Y = X n has a beta distribution with parameters (1/n,1). As such, The Irwin–Hall distribution is the sum of n i.i.d. U(0,1 ...

  3. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem. If the characteristic function φ X of a random variable X is integrable, then F X is absolutely continuous, and therefore X has a probability density function.

  4. Probability integral transform - Wikipedia

    en.wikipedia.org/wiki/Probability_integral_transform

    Here the problem of defining or manipulating a joint probability distribution for a set of random variables is simplified or reduced in apparent complexity by applying the probability integral transform to each of the components and then working with a joint distribution for which the marginal variables have uniform distributions.

  5. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    In the event that the variables X and Y are jointly normally distributed random variables, then X + Y is still normally distributed (see Multivariate normal distribution) and the mean is the sum of the means. However, the variances are not additive due to the correlation. Indeed,

  6. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The continuous mapping theorem states that for a continuous function g, if the sequence {X n} converges in distribution to X, then {g(X n)} converges in distribution to g(X). Note however that convergence in distribution of {X n} to X and {Y n} to Y does in general not imply convergence in distribution of {X n + Y n} to X + Y or of {X n Y n} to XY.

  7. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    If X has cumulative distribution function F X, then the inverse of the cumulative distribution F X (X) is a standard uniform (0,1) random variable; If X is a normal (μ, σ 2) random variable then e X is a lognormal (μ, σ 2) random variable. Conversely, if X is a lognormal (μ, σ 2) random variable then log X is a normal (μ, σ 2) random ...

  8. Equidistributed sequence - Wikipedia

    en.wikipedia.org/wiki/Equidistributed_sequence

    0, α, 2α, 3α, 4α, ... is equidistributed modulo 1. [3] More generally, if p is a polynomial with at least one coefficient other than the constant term irrational then the sequence p(n) is uniformly distributed modulo 1. This was proven by Weyl and is an application of van der Corput's difference theorem. [4]

  9. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    [3] The i.i.d. assumption is also used in the central limit theorem, which states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance approaches a normal distribution. [4] The i.i.d. assumption frequently arises in the context of sequences of random variables. Then, "independent and identically ...