Ad
related to: trig identities to remember
Search results
Results From The WOW.Com Content Network
Signs of trigonometric functions in each quadrant. All Students Take Calculus is a mnemonic for the sign of each trigonometric functions in each quadrant of the plane. The letters ASTC signify which of the trigonometric functions are positive, starting in the top right 1st quadrant and moving counterclockwise through quadrants 2 to 4.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
The mnemonic "SOHCAHTOA" (occasionally spelt "SOH CAH TOA") is often used to remember the basic trigonometric functions: [36] Sine = Opposite / Hypotenuse; Cosine = Adjacent / Hypotenuse; Tangent = Opposite / Adjacent; Other mnemonics that have been used for this include: Some Old Hippie Caught Another Hippie Tripping On Acid.
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
Acronym used in mathematics to remember the trigonometric functions sine, cosine, and tangent. SONAR. Sound navigation and ranging. SOS.
Trigonometric functions were among the earliest uses for mathematical tables. [48] Such tables were incorporated into mathematics textbooks and students were taught to look up values and how to interpolate between the values listed to get higher accuracy. [49] Slide rules had special scales for trigonometric functions. [50]
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...