Search results
Results From The WOW.Com Content Network
[5] The subdivision of the polygon into triangles forms a planar graph, and Euler's formula + = gives an equation that applies to the number of vertices, edges, and faces of any planar graph. The vertices are just the grid points of the polygon; there are = + of them. The faces are the triangles of the subdivision, and the single region of the ...
The simplest polygon which can cross itself; the simplest polygon which can be concave; the simplest polygon which can be non-cyclic. Can tile the plane. pentagon: 5 [21] The simplest polygon which can exist as a regular star. A star pentagon is known as a pentagram or pentacle. hexagon: 6
In general the intersection points can be determined by solving the equation by a Newton iteration. If a) both conics are given implicitly (by an equation) a 2-dimensional Newton iteration b) one implicitly and the other parametrically given a 1-dimensional Newton iteration is necessary. See next section.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
Convex hull ( in blue and yellow) of a simple polygon (in blue) The convex hull of a simple polygon encloses the given polygon and is partitioned by it into regions, one of which is the polygon itself. The other regions, bounded by a polygonal chain of the polygon and a single convex hull edge, are called pockets.
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
A sequence of regular polygons with numbers of sides equal to powers of two, inscribed in a circle. The ratios between areas or perimeters of consecutive polygons in the sequence give the terms of Viète's formula. Viète obtained his formula by comparing the areas of regular polygons with 2 n and 2 n + 1 sides inscribed in a circle.
The coordinates for the vertices of a square with vertical and horizontal sides, centered at the origin and with side length 2 are (±1, ±1), while the interior of this square consists of all points (x i, y i) with −1 < x i < 1 and −1 < y i < 1. The equation (,) = specifies the boundary of this square. This equation means "x 2 or y 2 ...