When.com Web Search

  1. Ad

    related to: square prism vs a cube calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A cube, a special case of the square rectangular box. A rectangular cuboid is a convex polyhedron with six rectangle faces. These are often called "cuboids", without qualifying them as being rectangular, but a cuboid can also refer to a more general class of polyhedra, with six quadrilateral faces. [ 1 ]

  3. Conway polyhedron notation - Wikipedia

    en.wikipedia.org/wiki/Conway_polyhedron_notation

    Square prism: P 4 (A cube is a special prism) C = P 4; Pentagonal antiprism: A 5. I = k 5 A 5 (A special gyroelongated dipyramid) D = t 5 dA 5 (A special truncated ...

  4. Tetragonal crystal system - Wikipedia

    en.wikipedia.org/wiki/Tetragonal_crystal_system

    Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square base (a by a) and height (c, which is different from a).

  5. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.

  6. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    By analogy, it relates to a parallelogram just as a cube relates to a square. [a] Three equivalent definitions of parallelepiped are a hexahedron with three pairs of parallel faces, a polyhedron with six faces , each of which is a parallelogram, and; a prism of which the base is a parallelogram.

  7. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    Coxeter, Longuet-Higgins & Miller (1954) define uniform polyhedra to be vertex-transitive polyhedra with regular faces. They define a polyhedron to be a finite set of polygons such that each side of a polygon is a side of just one other polygon, such that no non-empty proper subset of the polygons has the same property.

  8. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus = = . For a given shape, SA:V is inversely proportional to size.

  9. Lateral surface - Wikipedia

    en.wikipedia.org/wiki/Lateral_surface

    For a cube the lateral surface area would be the area of the four sides. If the edge of the cube has length a, the area of one square face A face = a ⋅ a = a 2. Thus the lateral surface of a cube will be the area of four faces: 4a 2. More generally, the lateral surface area of a prism is the sum of the areas of the sides of the prism. [1]