When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  3. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, ⁡ = ⁡ for matrices A, B, and C of dimensions k×l, l×m, and m×n.

  4. Kronecker delta - Wikipedia

    en.wikipedia.org/wiki/Kronecker_delta

    The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...

  5. Khatri–Rao product - Wikipedia

    en.wikipedia.org/wiki/Khatri–Rao_product

    In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices and is defined as [1] [2] [3] = in which the ij-th block is the m i p i × n j q j sized Kronecker product of the corresponding blocks of A and B, assuming the number of row and column partitions of both matrices is equal.

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  7. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Research into matrix multiplication complexity shows that there exist matrix multiplication algorithms with a complexity of O ... is the Kronecker delta.

  9. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    If a 2 x 2 real matrix has zero trace, its square is a diagonal matrix. The trace of a 2 × 2 complex matrix is used to classify Möbius transformations. First, the matrix is normalized to make its determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic.