Search results
Results From The WOW.Com Content Network
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
A metalloid is an element that possesses a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals, and which is therefore hard to classify as either a metal or a nonmetal. This is a generic definition that draws on metalloid attributes consistently cited in the literature.
Nonmetals show more variability in their properties than do metals. [1] Metalloids are included here since they behave predominately as chemically weak nonmetals.. Physically, they nearly all exist as diatomic or monatomic gases, or polyatomic solids having more substantial (open-packed) forms and relatively small atomic radii, unlike metals, which are nearly all solid and close-packed, and ...
Recognition status, as metalloids, of some elements in the p-block of the periodic table. Percentages are median appearance frequencies in the lists of metalloids. [n 2] The staircase-shaped line is a typical example of the arbitrary metal–nonmetal dividing line found on some periodic tables.
Pages in category "Metalloids" The following 11 pages are in this category, out of 11 total. ... Properties of metals, metalloids and nonmetals; S. Silicon; T. Tellurium
This line has been called the amphoteric line, [2] the metal-nonmetal line, [3] the metalloid line, [4] [5] the semimetal line, [6] or the staircase. [2] [n 1] While it has also been called the Zintl border [8] or the Zintl line [9] [10] these terms instead refer to a vertical line sometimes drawn between groups 13 and 14.
Boron, being a metalloid, is a thermal and electrical insulator at room temperature, but a good conductor of heat and electricity at high temperatures. [8] Unlike boron, the metals in the group are good conductors under normal conditions.
The chemistry of silver is dominated by its +1 valence state in which it shows generally similar physical and chemical properties to compounds of thallium, a main group metal, in the same oxidation state. [35] It tends to bond covalently in most of its compounds. [36] The oxide (Ag 2 O) is amphoteric, with basic properties predominating. [37]