Ads
related to: finding ordered pair solutions calculator with steps
Search results
Results From The WOW.Com Content Network
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
The Dijkstra algorithm originally was proposed as a solver for the single-source-shortest-paths problem. However, the algorithm can easily be used for solving the All-Pair-Shortest-Paths problem by executing the Single-Source variant with each node in the role of the root node. In pseudocode such an implementation could look as follows:
The example at left is that of an orthogonal array with symbol set {1,2} and strength 2. Notice that the four ordered pairs (2-tuples) formed by the rows restricted to the first and third columns, namely (1,1), (2,1), (1,2) and (2,2), are all the possible ordered pairs of the two element set and each appears exactly once.
The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953) , who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O ( V 4 ) .
Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics. A system of non-linear equations can often be approximated by a linear system (see linearization ), a helpful technique when making a mathematical ...
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...