Search results
Results From The WOW.Com Content Network
The field is depicted by electric field lines, lines which follow the direction of the electric field in space. The induced charge distribution in the sheet is not shown. The electric field is defined at each point in space as the force that would be experienced by an infinitesimally small stationary test charge at that point divided by the charge.
The concept of electric potential is closely linked to that of the electric field. A small charge placed within an electric field experiences a force, and to have brought that charge to that point against the force requires work. The electric potential at any point is defined as the energy required to bring a unit test charge from an infinite ...
More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation.
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
It describes the electric field produced by charged particles and by charge distributions. According to Gauss's law, the flux (or flow) of electric field through any closed surface is proportional to the amount of charge that is enclosed by that surface. [9] [10] This means that the greater the charge, the greater the electric field that is ...
Electric charges produce electric fields. [2] A moving charge also produces a magnetic field. [3] The interaction of electric charges with an electromagnetic field (a combination of an electric and a magnetic field) is the source of the electromagnetic (or Lorentz) force, [4] which is one of the four fundamental interactions in physics.
Electroluminescence — The phenomenon wherein a material emits light in response to an electric current passed through it, or to a strong electric field. Electrostatic induction — Redistribution of charges in a conductor inside an external static electric field, such as when a charged object is brought close.
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport