Search results
Results From The WOW.Com Content Network
The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries. [1] The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.
Approximately 75% of hepatic blood flow is derived from the portal vein, while the remainder is from the hepatic arteries. [4] Unlike most veins, the portal vein does not drain into the heart. Rather, it is part of a portal venous system that delivers venous blood into another capillary system, the hepatic sinusoids of the liver.
The human hepatic portal system delivers about three-fourths of the blood going to the liver.The final common pathway for transport of venous blood from spleen, pancreas, gallbladder and the abdominal portion of the gastrointestinal tract [2] (with the exception of the inferior part of the anal canal and sigmoid colon) is through the hepatic portal vein.
The pumping action of the heart generates pulsatile blood flow, which is conducted into the arteries, across the micro-circulation and eventually, back via the venous system to the heart. During each heartbeat, systemic arterial blood pressure varies between a maximum ( systolic ) and a minimum ( diastolic ) pressure. [ 33 ]
The classic definition by MP Spencer and AB Denison of compliance is the change in arterial blood volume due to a given change in arterial blood pressure ().They wrote this in the "Handbook of Physiology" in 1963 in work entitled "Pulsatile Flow in the Vascular System".
The inferior mesenteric vein connects in the majority of people on the splenic vein, but in some people, it is known to connect on the portal vein or the superior mesenteric vein. Roughly, the portal venous system corresponds to areas supplied by the celiac trunk, the superior mesenteric artery, and the inferior mesenteric artery.
It is a dimensionless expression of the pulsatile flow frequency in relation to viscous effects. It is named after John R. Womersley (1907–1958) for his work with blood flow in arteries. [1] The Womersley number is important in keeping dynamic similarity when scaling an experiment. An example of this is scaling up the vascular system for ...
In the bone marrow transplant setting, hepatic veno-occlusive disease is felt to be due to injury to the hepatic venous endothelium from the conditioning regimen. Toxic agents causing veno-occlusive disease include plants as well as the medication cyclophosphamide. [citation needed]