Search results
Results From The WOW.Com Content Network
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.
A great merit of the internal energy concept is that it frees thermodynamics from a restriction to cyclic processes, and allows a treatment in terms of thermodynamic states. In an adiabatic process, adiabatic work takes the system either from a reference state with internal energy () to an arbitrary one with internal energy (), or from the ...
Several commonly studied thermodynamic processes are: Adiabatic process: occurs without loss or gain of energy by heat; Isenthalpic process: occurs at a constant enthalpy; Isentropic process: a reversible adiabatic process, occurs at a constant entropy; Isobaric process: occurs at constant pressure
In thermodynamics, an adiabatic process is a change that occurs without heat flow; it may be slow or fast. A reversible adiabatic process is an adiabatic process that occurs slowly compared to the time to reach equilibrium. In a reversible adiabatic process, the system is in equilibrium at all stages and the entropy is constant. In the 1st half ...
Isentropic process (adiabatic and reversible) ... and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability. ...
Adiabatic (from Gr. ἀ negative + διάβασις passage; transference) refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. This concept is used in many areas of physics and engineering.
The internal energy of a closed system is increased by an adiabatic process, throughout the duration of which, the volume of the system remains constant. [ 18 ] [ 51 ] This formulation does not mention heat and does not mention temperature, nor even entropy, and does not necessarily implicitly rely on those concepts, but it implies the content ...
The term "adiabatic" is traditionally used in thermodynamics to describe processes without the exchange of heat between system and environment (see adiabatic process), more precisely these processes are usually faster than the timescale of heat exchange. (For example, a pressure wave is adiabatic with respect to a heat wave, which is not ...