Search results
Results From The WOW.Com Content Network
The Hough transform is a feature extraction technique used in image analysis, ... Hough transform for lines using MATLAB Archived 2014-04-13 at the Wayback Machine;
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...
The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.
Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) [1] The basic idea of Hough transform (HT) is to implement a voting ...
Therefore, one expects that line detection algorithms should successfully detect these lines in practice. Indeed, the following figure demonstrates Hough transform-based line detection applied to a perspective-transformed chessboard image. Clearly, the Hough transform is able to accurately detect the lines induced by the board squares.
The phase stretch transform or PST is a physics-inspired computational approach to signal and image processing. One of its utilities is for feature detection and classification. [20] [21] PST is a spin-off from research on the time stretch dispersive Fourier transform. PST transforms the image by emulating propagation through a diffractive ...
The Kadir–Brady saliency detector extracts features of objects in images that are distinct and representative. It was invented by Timor Kadir and J. Michael Brady [1] in 2001 and an affine invariant version was introduced by Kadir and Brady in 2004 [2] and a robust version was designed by Shao et al. [3] in 2007.