When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scale space implementation - Wikipedia

    en.wikipedia.org/wiki/Scale_space_implementation

    As with the sampled Gaussian, a plain truncation of the infinite impulse response will in most cases be a sufficient approximation for small values of ε, while for larger values of ε it is better to use either a decomposition of the discrete Gaussian into a cascade of generalized binomial filters or alternatively to construct a finite ...

  3. Scale space - Wikipedia

    en.wikipedia.org/wiki/Scale_space

    For temporal smoothing in real-time situations, one can instead use the temporal kernel referred to as the time-causal limit kernel, [71] which possesses similar properties in a time-causal situation (non-creation of new structures towards increasing scale and temporal scale covariance) as the Gaussian kernel obeys in the non-causal case. The ...

  4. Scale-space axioms - Wikipedia

    en.wikipedia.org/wiki/Scale-space_axioms

    Once established, the axioms narrow the possible scale-space representations to a smaller class, typically with only a few free parameters. A set of standard scale space axioms, discussed below, leads to the linear Gaussian scale-space, which is the most common type of scale space used in image processing and computer vision.

  5. Multi-scale approaches - Wikipedia

    en.wikipedia.org/wiki/Multi-scale_approaches

    From this classification, it is apparent that we require a continuous semi-group structure, there are only three classes of scale-space kernels with a continuous scale parameter; the Gaussian kernel which forms the scale-space of continuous signals, the discrete Gaussian kernel which forms the scale-space of discrete signals and the time-causal ...

  6. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    A simple answer is to sample the continuous Gaussian, yielding the sampled Gaussian kernel. However, this discrete function does not have the discrete analogs of the properties of the continuous function, and can lead to undesired effects, as described in the article scale space implementation .

  7. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    The density estimates are kernel density estimates using a Gaussian kernel. That is, a Gaussian density function is placed at each data point, and the sum of the density functions is computed over the range of the data. From the density of "glu" conditional on diabetes, we can obtain the probability of diabetes conditional on "glu" via Bayes ...

  8. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    Multiple kernel learning can also be used as a form of nonlinear variable selection, or as a model aggregation technique (e.g. by taking the sum of squared norms and relaxing sparsity constraints). For example, each kernel can be taken to be the Gaussian kernel with a different width.

  9. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.