Search results
Results From The WOW.Com Content Network
For such use, the concentration of fissile isotopes uranium-235 and plutonium-239 in the element used must be sufficiently high. Uranium from natural sources is enriched by isotope separation, and plutonium is produced in a suitable nuclear reactor.
The odd numbered fissile plutonium isotopes present in spent nuclear fuel, such as Pu-239, decrease significantly as a percentage of the total composition of all plutonium isotopes (which was 1.11% in the first example above) as higher and higher burnups take place, while the even numbered non-fissile plutonium isotopes (e.g. Pu-238, Pu-240 and ...
Plutonium–gallium–cobalt alloy (PuCoGa 5) is an unconventional superconductor, showing superconductivity below 18.5 K, an order of magnitude higher than the highest between heavy fermion systems, and has large critical current. [46] [50] Plutonium–zirconium alloy can be used as nuclear fuel. [51]
Special nuclear material (SNM) is a term used by the United States Nuclear Regulatory Commission to classify fissile materials.The NRC divides special nuclear material into three main categories, according to the risk and potential for its direct use in a clandestine nuclear weapon or for its use in the production of nuclear material for use in a nuclear weapon.
The plutonium, dissolved in an organic solvent, flowed into the center of the vortex. Due to a procedural error, the mixture contained 3.27 kg of plutonium, which reached criticality for about 200 microseconds. Kelley received 3,900 to 4,900 rad (36.385 to 45.715 Sv) according to later estimates.
The "special nuclear materials" are also plutonium-239, uranium-233, and enriched uranium (U-235). Note that the 1980 Convention on the Physical Protection of Nuclear Material definition of nuclear material does not include thorium. [4] The NRC has a regulatory process for nuclear materials with five main components. [5]
Due to their higher thermal velocity, the free molecules leave the axis of the molecular beam faster than the clusters. The latter are therefore enriched in the part transmitted by a skimmer nozzle downstream, whereas the non-transmitted fraction is enriched in the 235 UF 6. The enrichment factor is the better, the larger the transmitted ...
Plutonium oxide is substantially more toxic than uranium oxide, making fuel manufacture more difficult and expensive. As plutonium isotopes absorb more neutrons than uranium fuels, reactor control systems may need modification. MOX fuel tends to run hotter because of lower thermal conductivity, which may be an issue in some reactor designs.