Search results
Results From The WOW.Com Content Network
In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger ( † ), so the equation above is written
The complex Schur decomposition reads as follows: if A is an n × n square matrix with complex entries, then A can be expressed as [1] [2] [3] = for some unitary matrix Q (so that the inverse Q −1 is also the conjugate transpose Q* of Q), and some upper triangular matrix U. This is called a Schur form of A.
More specifically, they can be characterized as orthogonal matrices with determinant 1; that is, a square matrix R is a rotation matrix if and only if R T = R −1 and det R = 1. The set of all orthogonal matrices of size n with determinant +1 is a representation of a group known as the special orthogonal group SO( n ) , one example of which is ...
Then a Givens rotation G can be chosen using the i and j>i rows and columns so as to make the ji element of the product matrix G D A be zero. Since a product of unitary matrices is unitary, the product matrix G D is unitary and so is any product of such matrix pair products.
These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1] These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark ...
A matrix with all entries either 0 or 1. Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix
Householder transformations are widely used in numerical linear algebra, for example, to annihilate the entries below the main diagonal of a matrix, [2] to perform QR decompositions and in the first step of the QR algorithm. They are also widely used for transforming to a Hessenberg form.
In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal. [1] They are named after Karl Hessenberg. [2]