When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  3. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...

  4. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    For pipe flows a so-called transit time method is applied where a radiotracer is injected as a pulse into the measured flow. The transit time is defined with the help of radiation detectors placed on the outside of the pipe. The volume flow is obtained by multiplying the measured average fluid flow velocity by the inner pipe cross-section.

  5. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q. We also know that pressure must be proportional to the length of the pipe between the two points L as the pressure drop per unit length is a constant.

  7. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4. Fig. 4. Velocity profile along a manifold

  8. Volumetric flux - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flux

    In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m 3 ·s −1 ·m −2), and has dimensions of distance/time (volume/(time*area)) - equivalent to mean velocity. The density of a particular property in a fluid's volume, multiplied with the volumetric flux of the fluid, thus defines the advective flux of that ...

  9. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.