Search results
Results From The WOW.Com Content Network
In the case of a pyramid, its surface area is the sum of the area of triangles and the area of the polygonal base. The volume of a pyramid is the one-third product of the base's area and the height. The pyramid height is defined as the length of the line segment between the apex and its orthogonal projection on the base.
The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...
A normal triangle is a 2-dimensional hyperpyramid, the triangular pyramid is a 3-dimensional hyperpyramid and the pentachoron or tetrahedral pyramid is a 4-dimensional hyperpyramid with a tetrahedron as base. The n-dimensional volume of a n-dimensional hyperpyramid can be computed as follows: = Here V n denotes the n-dimensional volume of the ...
A pyramid (from Ancient Greek πυραμίς (puramís) 'pyramid') [1] [2] is a structure whose visible surfaces are triangular in broad outline and converge toward the top, making the appearance roughly a pyramid in the geometric sense. The base of a pyramid can be of any polygon shape, such as triangular or quadrilateral, and its lines either ...
Therefore, the surface area of a pentagonal pyramid is the sum of the areas of the four triangles and the one pentagon. The volume of every pyramid equals one-third of the area of its base multiplied by its height. So, the volume of a pentagonal pyramid is one-third of the product of the height and a pentagonal pyramid's area. [9]
An elongated triangular pyramid with edge length has a height, by adding the height of a regular tetrahedron and a triangular prism: [4] (+). Its surface area can be calculated by adding the area of all eight equilateral triangles and three squares: [2] (+), and its volume can be calculated by slicing it into a regular tetrahedron and a prism, adding their volume up: [2]: ((+)).
The volume is computed as F times the volume of the pyramid whose base is a regular p-gon and whose height is the inradius r. That is, =. The following table lists the various radii of the Platonic solids together with their surface area and volume.
By this usage, the area of a parallelogram or the volume of a prism or cylinder can be calculated by multiplying its "base" by its height; likewise, the areas of triangles and the volumes of cones and pyramids are fractions of the products of their bases and heights. Some figures have two parallel bases (such as trapezoids and frustums), both ...