Search results
Results From The WOW.Com Content Network
The discovery of the existence of this type of transporter protein came from the study of the kinetics of cross-membrane molecule transport. For certain solutes it was noted that the transport velocity reached a plateau at a particular concentration above which there was no significant increase in uptake rate, indicating a log curve type response.
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
Mechanism of uniport transport across cell membrane. Uniporters work to transport molecules or ions by passive transport across a cell membrane down its concentration gradient. Upon binding and recognition of a specific substrate molecule on one side of the uniporter membrane, a conformational change is triggered in the transporter protein. [27]
In secondary active transport, also known as cotransport or coupled transport, energy is used to transport molecules across a membrane; however, in contrast to primary active transport, there is no direct coupling of ATP. Instead, it relies upon the electrochemical potential difference created by pumping ions in/out of the cell. [18]
Carrier proteins are integral membrane proteins; that is, they exist within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion (i.e., passive transport) or active transport. These mechanisms of movement are known as carrier-mediated transport. [2]
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
The membrane is represented in light yellow. A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane.
Macromolecules, such as RNA and proteins, are actively transported across the nuclear membrane in a process called the Ran-GTP nuclear transport cycle. G-proteins are GTPase enzymes that bind to a molecule called guanosine triphosphate (GTP) which they then hydrolyze to create guanosine diphosphate (GDP) and release energy.