When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Every polynomial with rational coefficients, may be factorized, in a unique way, as the product of a rational number and a polynomial with integer coefficients, which is primitive (that is, the greatest common divisor of the coefficients is 1), and has a positive leading coefficient (coefficient of the term of the highest degree). For example:

  4. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.

  5. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.

  6. Primitive part and content - Wikipedia

    en.wikipedia.org/wiki/Primitive_part_and_content

    The primitive-part-content factorization may be extended to polynomials with rational coefficients as follows. Given a polynomial P with rational coefficients, by rewriting its coefficients with the same common denominator d, one may rewrite P as =, where Q is a polynomial with integer coefficients.

  7. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    The above solution shows that a quartic polynomial with rational coefficients and a zero coefficient on the cubic term is factorable into quadratics with rational coefficients if and only if either the resolvent cubic has a non-zero root which is the square of a rational, or p 2 − 4r is the square of rational and q = 0; this can readily be ...

  8. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.

  9. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.