Search results
Results From The WOW.Com Content Network
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
This means that the n 2 ordered pairs (r, c) are all the pairs (i, j) with 1 ≤ i, j ≤ n, once each. The same is true of the ordered pairs (r, s) and the ordered pairs (c, s). The orthogonal array representation shows that rows, columns and symbols play rather similar roles, as will be made clear below.
A Graeco-Latin square or Euler square or pair of orthogonal Latin squares of order n over two sets S and T (which may be the same), each consisting of n symbols, is an n × n arrangement of cells, each cell containing an ordered pair (s, t), where s is in S and t is in T, such that every row and every column contains each element of S and each element of T exactly once, and that no two cells ...
An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes , [ 5 ] whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product .
The example at left is that of an orthogonal array with symbol set {1,2} and strength 2. Notice that the four ordered pairs (2-tuples) formed by the rows restricted to the first and third columns, namely (1,1), (2,1), (1,2) and (2,2), are all the possible ordered pairs of the two element set and each appears exactly once.
Given a set X, a relation R over X is a set of ordered pairs of elements from X, formally: R ⊆ { (x,y) | x, y ∈ X}. [2] [10] The statement (x,y) ∈ R reads "x is R-related to y" and is written in infix notation as xRy. [7] [8] The order of the elements is important; if x ≠ y then yRx can be true or false independently of xRy.
First, the enumerated set { (x, 1), (y, 2), (z, 3) } is defined in which the number in each ordered pair represents the position of the paired element of S in a sequence of binary digits such as {x, y} = 011 (2); x of S is located at the first from the right of this sequence and y is at the second from the right, and 1 in the sequence means the ...
It is defined differently, but analogously, for different kinds of structures. As an example, the direct sum of two abelian groups and is another abelian group consisting of the ordered pairs (,) where and .