Search results
Results From The WOW.Com Content Network
[8] [9] [10] The latter spelling is still listed in some dictionaries, [1] but is now rare in English texts. Some popular US dictionaries list only the spelling angstrom. [2] [3] The unit's symbol is Å, which is a letter of the Swedish alphabet, regardless of how the unit is spelled.
An 8-bit register can store 2 8 different values. The range of integer values that can be stored in 8 bits depends on the integer representation used. With the two most common representations, the range is 0 through 255 (2 8 − 1) for representation as an binary number, and −128 (−1 × 2 7) through 127 (2 7 − 1) for representation as two's complement.
When b is 2, the unit is the shannon, equal to the information content of one "bit". A system with 8 possible states, for example, can store up to log 2 8 = 3 bits of information. Other units that have been named include: Base b = 3 the unit is called "trit", and is equal to log 2 3 (≈ 1.585) bits. [3] Base b = 10
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
A system of units based on powers of 2 in which 1 kibibyte (KiB) is equal to 1,024 (i.e., 2 10) bytes is defined by international standard IEC 80000-13 and is supported by national and international standards bodies (BIPM, IEC, NIST). The IEC standard defines eight such multiples, up to 1 yobibyte (YiB), equal to 1024 8 bytes.
In information theory, one bit is the information entropy of a random binary variable that is 0 or 1 with equal probability, [3] or the information that is gained when the value of such a variable becomes known. [4] [5] As a unit of information or negentropy, the bit is also known as a shannon, [6] named after Claude E. Shannon.
The binary value of all eight bits set (or activated) is 11111111 2, equal to the hexadecimal value FF 16, the decimal value 255 10, and the octal value 377 8. One octet can be used to represent decimal values ranging from 0 to 255. The term octet (symbol: o [nb 1]) is often used when the use of byte might be ambiguous.
This table illustrates an example of an 8 bit signed decimal value using the two's complement method. The MSb most significant bit has a negative weight in signed integers, in this case -2 7 = -128. The other bits have positive weights. The lsb (least significant bit) has weight 1. The signed value is in this case -128+2 = -126.