Search results
Results From The WOW.Com Content Network
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.
It is a common pattern in software testing to send values through test functions and check for correct output. In many cases, in order to thoroughly test functionalities, one needs to test multiple sets of input/output, and writing such cases separately would cause duplicate code as most of the actions would remain the same, only differing in input/output values.
In statistics, Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. [1] This test is used because some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption.
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
However, the studentized range distribution used to determine the level of significance of the differences considered in Tukey's test has vastly broader application: It is useful for researchers who have searched their collected data for remarkable differences between groups, but then cannot validly determine how significant their discovered ...
Permutational multivariate analysis of variance (PERMANOVA), [1] is a non-parametric multivariate statistical permutation test.PERMANOVA is used to compare groups of objects and test the null hypothesis that the centroids and dispersion of the groups as defined by measure space are equivalent for all groups.
As such, for two objects and having descriptors, the similarity is defined as: = = =, where the are non-negative weights and is the similarity between the two objects regarding their -th variable. In spectral clustering , a similarity, or affinity, measure is used to transform data to overcome difficulties related to lack of convexity in the ...