Search results
Results From The WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
In animal cells excessive osmotic pressure can result in cytolysis due to the absence of a cell wall. Osmotic pressure is the basis of filtering ("reverse osmosis"), a process commonly used in water purification. The water to be purified is placed in a chamber and put under an amount of pressure greater than the osmotic pressure exerted by the ...
Turgor pressure within the stomata regulates when the stomata can open and close, which plays a role in transpiration rates of the plant. This is also important because this function regulates water loss within the plant. Lower turgor pressure can mean that the cell has a low water concentration and closing the stomata would help to preserve water.
Cytolysis, or osmotic lysis, occurs when a cell bursts due to an osmotic imbalance that has caused excess water to diffuse into the cell. Water can enter the cell by diffusion through the cell membrane or through selective membrane channels called aquaporins, which greatly facilitate the flow of water. [ 1 ]
Additionally, in some organisms the efflux of amino acids associated with hypo-osmotic stress can be inhibited by phenothiazines. [9] Hypo-osmotic stress is correlated with extracellular ATP release. ATP is used to activate purinergic receptors. [10] These receptors regulate sodium and potassium levels on either side of the cell membrane.
The long and thin shape of root hairs maximizes surface area so that more water can enter. There is greater water potential in the soil than in the cytoplasm of the root hair cells. As the cell's surface membrane of the root hair cell is semi-permeable, osmosis can take place; and water passes from the soil to the root hairs. The next stage in ...
Penetrating solutes can diffuse through the cell membrane, causing momentary changes in cell volume as the solutes "pull" water molecules with them. Non-penetrating solutes cannot cross the cell membrane; therefore, the movement of water across the cell membrane (i.e., osmosis ) must occur for the solutions to reach equilibrium .