When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.

  3. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...

  4. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    The Bailey–Borwein–Plouffe formula (BBP formula) is a formula for π. It was discovered in 1995 by Simon Plouffe and is named after the authors of the article in which it was published, David H. Bailey, Peter Borwein, and Plouffe. [1] Before that, it had been published by Plouffe on his own site. [2] The formula is:

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  6. Madhava series - Wikipedia

    en.wikipedia.org/wiki/Madhava_series

    The specific value ⁡ = can be used to calculate the circle constant π, and the arctangent series for 1 is conventionally called Leibniz's series. In recognition of Madhava's priority , in recent literature these series are sometimes called the Madhava–Newton series , [ 4 ] Madhava–Gregory series , [ 5 ] or Madhava–Leibniz series [ 6 ...

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler . It is a special case of Euler's formula e i x = cos ⁡ x + i sin ⁡ x {\displaystyle e^{ix}=\cos x+i\sin x} when evaluated for x = π {\displaystyle x=\pi } .

  8. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    The extremely slow convergence of the arctangent series for | | makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed ⁠ 1 4 π {\displaystyle {\tfrac {1}{4}}\pi } ⁠ as a sum of arctangents of smaller values, eventually resulting in a variety of ...

  9. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Found several rapidly converging infinite series of π, which can compute 8 decimal places of π with each term in the series. Since the 1980s, his series have become the basis for the fastest algorithms currently used by Yasumasa Kanada and the Chudnovsky brothers to compute π. 1946 D. F. Ferguson: Made use of a desk calculator [24] 620: 1947 ...