Search results
Results From The WOW.Com Content Network
Grignard reagents or Grignard compounds are chemical compounds with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH 3 and phenylmagnesium bromide (C 6 H 5)−Mg−Br. They are a subclass of the organomagnesium compounds.
A solution of a carbonyl compound is added to a Grignard reagent. (See gallery) An example of a Grignard reaction (R 2 or R 3 could be hydrogen). The Grignard reaction (French:) is an organometallic chemical reaction in which, according to the classical definition, carbon alkyl, allyl, vinyl, or aryl magnesium halides (Grignard reagent) are added to the carbonyl groups of either an aldehyde or ...
Classic is the reaction of a Grignard reagent with tin halides for example tin tetrachloride. An example is provided by the synthesis of tetraethyltin: [16] 4 CH 3 CH 2 MgBr + SnCl 4 → (CH 3 CH 2) 4 Sn + 4 MgClBr
The reaction mixture containing the Grignard reagent is allowed to warm to room temperature in a water bath to allow excess dry ice to evaporate. Any remaining Grignard reagent is quenched by the addition of water. Dilute hydrochloric acid is added to the reaction mixture to protonate the benzoate salts, as well as to dissolve the magnesium ...
The Bouveault aldehyde synthesis (also known as the Bouveault reaction) is a one-pot substitution reaction that replaces an alkyl or aryl halide with a formyl group using a N,N-disubstituted formamide. [1] [2] For primary alkyl halides this produces the homologous aldehyde one carbon longer. For aryl halides this produces the corresponding ...
The reaction typically is carried out in tetrahydrofuran or diethyl ether as solvent. Such ethereal solvents are convenient because these are typical solvents for generating the Grignard reagent. [2] Due to the high reactivity of the Grignard reagent, Kumada couplings have limited functional group tolerance which can be problematic in large ...
Grignard reagents can be prepared by treating a preformed Grignard reagent with an organic halide. This method offers the advantage that the Mg transfer tolerates many functional groups. A typical reaction involves isopropylmagnesium chloride and aryl bromide or iodides: [10] i-PrMgCl + ArCl → i-PrCl + ArMgCl
Dehalogenation using Grignard reagents is a two steps hydrodehalogenation process. The reaction begins with the formation of alkyl/arene-magnesium-halogen compound, followed by addition of proton source to form dehalogenated product.