Search results
Results From The WOW.Com Content Network
Most stars are actually relatively cool objects emitting much of their electromagnetic radiation in the visible or near-infrared part of the spectrum. Ultraviolet radiation is the signature of hotter objects, typically in the early and late stages of their evolution. In the Earth's sky seen in ultraviolet light, most stars would fade in prominence.
Extremely hot stars (such as O- and B-type) emit proportionally more UV radiation than the Sun. Sunlight in space at the top of Earth's atmosphere (see solar constant) is composed of about 50% infrared light, 40% visible light, and 10% ultraviolet light, for a total intensity of about 1400 W/m 2 in vacuum.
In reflected UV photography the subject is illuminated directly by UV emitting lamps (radiation sources) or by strong sunlight. A UV transmitting filter is placed on the lens, which allows ultraviolet radiation to pass and which absorbs or blocks all light and infrared radiation. UV filters are made from special colored glass and may be coated ...
This is a list of sources of light, the visible part of the electromagnetic spectrum.Light sources produce photons from another energy source, such as heat, chemical reactions, or conversion of mass or a different frequency of electromagnetic energy, and include light bulbs and stars like the Sun. Reflectors (such as the moon, cat's eyes, and mirrors) do not actually produce the light that ...
Optical radiation is the part of the electromagnetic spectrum with wavelengths between 100 nm and 1 mm. [1] [2] This range includes visible light, infrared light, and part of the ultraviolet spectrum. [3]
Opacity depends on the frequency of the light being considered. For instance, some kinds of glass , while transparent in the visual range , are largely opaque to ultraviolet light. More extreme frequency-dependence is visible in the absorption lines of cold gases .
Extreme ultraviolet composite image of the Sun (red: 21.1 nm, green: 19.3 nm, blue: 17.1 nm) taken by the Solar Dynamics Observatory on August 1, 2010 13.5 nm extreme ultraviolet light is used commercially for photolithography as part of the semiconductor fabrication process.
Objects have a tendency to selectively absorb, reflect, or transmit light of certain frequencies. That is, one object might reflect green light while absorbing all other frequencies of visible light. Another object might selectively transmit blue light while absorbing all other frequencies of visible light.