Search results
Results From The WOW.Com Content Network
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
The Pauli matrices are involutory, meaning that the square of a Pauli matrix is the identity matrix. = = = = = The ... The product symbol ...
The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2) .
As Pauli matrices are related to the generator of rotations, these rotation operators can be written as matrix exponentials with Pauli matrices in the argument. Any 2 × 2 {\displaystyle 2\times 2} unitary matrix in SU(2) can be written as a product (i.e. series circuit) of three rotation gates or less.
In 1927, Pauli formalized the theory of spin using the theory of quantum mechanics invented by Erwin Schrödinger and Werner Heisenberg. He pioneered the use of Pauli matrices as a representation of the spin operators and introduced a two-component spinor wave-function. Pauli's theory of spin was non-relativistic.
Pauli introduced the 2×2 Pauli matrices as a basis of spin operators, thus solving the nonrelativistic theory of spin. This work, including the Pauli equation , is sometimes said to have influenced Paul Dirac in his creation of the Dirac equation for the relativistic electron, though Dirac said that he invented these same matrices himself ...
The symbol can be used to signify surface tension (alternatively, γ or T are also used instead). In quantum mechanics , σ is used to indicate Pauli matrices . In astronomy , σ represents velocity dispersion .
= ¯ (′) where B μ is the U(1) gauge field; Y W is the weak hypercharge (the generator of the U(1) group); W μ is the three-component SU(2) gauge field; and the components of τ are the Pauli matrices (infinitesimal generators of the SU(2) group) whose eigenvalues give the weak isospin.