Search results
Results From The WOW.Com Content Network
The continuum hypothesis was advanced by Georg Cantor in 1878, [1] and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being ...
the continuum hypothesis or CH (Gödel produced a model of ZFC in which CH is true, showing that CH cannot be disproven in ZFC; Paul Cohen later invented the method of forcing to exhibit a model of ZFC in which CH fails, showing that CH cannot be proven in ZFC. The following four independence results are also due to Gödel/Cohen.);
The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or alternatively, that c = ℵ 1 {\displaystyle {\mathfrak {c}}=\aleph _{1}} .
Continuum hypothesis; Diamond principle; Martin's axiom (which is not a ZFC axiom) Suslin hypothesis; Remarks: The consistency of V=L is provable by inner models but not forcing: every model of ZF can be trimmed to become a model of ZFC + V=L. The diamond principle implies the continuum hypothesis and the negation of the Suslin hypothesis.
Paul Cohen invented the method of forcing while searching for a model of ZFC in which the continuum hypothesis fails, or a model of ZF in which the axiom of choice fails. Forcing adjoins to some given model of set theory additional sets in order to create a larger model with properties determined (i.e. "forced") by the construction and the ...
Linear continuum, any ordered set that shares certain properties of the real line; Continuum (topology), a nonempty compact connected metric space (sometimes a Hausdorff space) Continuum hypothesis, a conjecture of Georg Cantor that there is no cardinal number between that of countably infinite sets and the cardinality of the set of all real ...
B. Russell: The principles of mathematics I, Cambridge 1903. B. Russell: On some difficulties in the theory of transfinite numbers and order types, Proc. London Math. Soc. (2) 4 (1907) 29-53. P. J. Cohen: Set Theory and the Continuum Hypothesis, Benjamin, New York 1966. S. Wagon: The Banach–Tarski Paradox, Cambridge University Press ...
The continuum hypothesis and the generalized continuum hypothesis; The Suslin conjecture; The following statements (none of which have been proved false) cannot be proved in ZFC (the Zermelo–Fraenkel set theory plus the axiom of choice) to be independent of ZFC, under the added hypothesis that ZFC is consistent.