When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energymomentum_relation

    The energymomentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc 2 relates total energy E to the (total) relativistic mass m (alternatively denoted m rel or m tot), while E 0 = m 0 c 2 relates rest energy E 0 to (invariant) rest mass m 0.

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The total kinetic energy of a system depends on the inertial frame of reference: it is the sum of the total kinetic energy in a center of momentum frame and the kinetic energy the total mass would have if it were concentrated in the center of mass.

  4. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    The momentum and energy equations also apply to the motions of objects that begin together and then move apart. For example, an explosion is the result of a chain reaction that transforms potential energy stored in chemical, mechanical, or nuclear form into kinetic energy, acoustic energy, and electromagnetic radiation.

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The concept of energy became a key part of Newtonian mechanics in the post-Newton period. Huygens' solution of the collision of hard spheres showed that in that case, not only is momentum conserved, but kinetic energy is as well (or, rather, a quantity that in retrospect we can identify as one-half the total kinetic energy).

  6. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Therefore, the kinetic energy per kelvin of one mole of monatomic ideal gas (D = 3) is = =, where is the Avogadro constant, and R is the ideal gas constant. Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily:

  7. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    The gauge-invariant angular momentum (or "kinetic angular momentum") is given by = (), which has the commutation relations [,] = (+ ()) where = is the magnetic field. The inequivalence of these two formulations shows up in the Zeeman effect and the Aharonov–Bohm effect .

  8. König's theorem (kinetics) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(kinetics)

    The second part expresses the kinetic energy of a system of particles in terms of the velocities of the individual particles and the centre of mass.. Specifically, it states that the kinetic energy of a system of particles is the sum of the kinetic energy associated to the movement of the center of mass and the kinetic energy associated to the movement of the particles relative to the center ...

  9. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    This is not the case for the Dirac equation and its energymomentum tensor. [ 6 ] The stress energy tensor is the set of conserved currents corresponding to the invariance of the Klein–Gordon equation under space-time translations x μ ↦ x μ + c μ {\displaystyle x^{\mu }\mapsto x^{\mu }+c^{\mu }} .