When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gas kinetics - Wikipedia

    en.wikipedia.org/wiki/Gas_kinetics

    A stationary normal shock wave is classified as going in the normal direction of the flow direction. For example, when a piston moves at a constant rate inside a tube, sound waves that travel down the tube are produced. As the piston continues to move, the wave begins to come together and compresses the gas inside the tube.

  3. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.

  4. Particle displacement - Wikipedia

    en.wikipedia.org/wiki/Particle_displacement

    In most cases this is a longitudinal wave of pressure (such as sound), but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling. [2]

  5. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.

  6. Wave - Wikipedia

    en.wikipedia.org/wiki/Wave

    In the case of a periodic function F with period λ, that is, F(x + λ − vt) = F(x − vt), the periodicity of F in space means that a snapshot of the wave at a given time t finds the wave varying periodically in space with period λ (the wavelength of the wave).

  7. Propagation delay - Wikipedia

    en.wikipedia.org/wiki/Propagation_delay

    An electromagnetic wave travelling through a medium has a propagation delay determined by the speed of light in that particular medium, or ca. 1 nanosecond per 29.98 centimetres (11.80 in) in a vacuum. An electric signal travelling through a wire has an propagation delay of ca. 1 nanosecond per 15 centimetres (5.9 in). [1]

  8. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...

  9. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [ 2 ] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals ( sound ), radio waves , and light .