When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Semicircle - Wikipedia

    en.wikipedia.org/wiki/Semicircle

    For a semicircle with a diameter of a + b, the length of its radius is the arithmetic mean of a and b (since the radius is half of the diameter). The geometric mean can be found by dividing the diameter into two segments of lengths a and b, and then connecting their common endpoint to the semicircle with a segment perpendicular to the diameter ...

  3. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = ⁠ 1 / 2 ⁠ × 2πr × r, holds for a circle.

  4. Semiperimeter - Wikipedia

    en.wikipedia.org/wiki/Semiperimeter

    The area A of any triangle is the product of its inradius (the radius of its inscribed circle) and its semiperimeter: A = r s . {\displaystyle A=rs.} The area of a triangle can also be calculated from its semiperimeter and side lengths a, b, c using Heron's formula :

  5. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.

  6. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    where C is the circumference of a circle, d is the diameter, and r is the radius. More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width. = where A is the area of a circle. More generally, =

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  8. Archimedean circle - Wikipedia

    en.wikipedia.org/wiki/Archimedean_circle

    In geometry, an Archimedean circle is any circle constructed from an arbelos that has the same radius as each of Archimedes' twin circles. If the arbelos is normed such that the diameter of its outer (largest) half circle has a length of 1 and r denotes the radius of any of the inner half circles, then the radius ρ of such an Archimedean ...

  9. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Radius: a line segment joining the centre of a circle with any single point on the circle itself; or the length of such a segment, which is half (the length of) a diameter. Usually, the radius is denoted r {\displaystyle r} and required to be a positive number.