Search results
Results From The WOW.Com Content Network
In 1995 the USDA released a report stating that the net energy balance of corn ethanol in the United States was an average of 1.24. It was previously considered to have a negative net energy balance. However, due to increases in corn crop yield and more efficient farming practices corn ethanol had gained energy efficiency. [3]
The total amount of energy input into the process compared to the energy released by burning the resulting ethanol fuel is known as the energy balance (or "energy returned on energy invested"). Figures compiled in a 2007 report by National Geographic [ 68 ] point to modest results for corn ethanol produced in the US: one unit of fossil-fuel ...
In other words, for the same energy content as one liter or one gallon of gasoline, one needs 1.6 liters/gallons of ethanol and 2.1 liters/gallons of methanol. The raw energy-per-volume numbers produce misleading fuel consumption numbers, however, because alcohol-fueled engines can be made substantially more energy-efficient.
One major drawback with corn ethanol, is the energy returned on energy invested , meaning the energy outputted in comparison to the energy required to output that energy. Compared to oil, with an 11:1 EROI, corn ethanol has a much lower EROI of 1.5:1, which, in turn, also provides less mileage per gallon compared to gasoline. [7]
Sugarcane ethanol has an energy balance seven times greater than corn ethanol. [101] As of 2007, Brazilian distiller production costs were 22 cents per liter, compared with 30 cents per liter for corn-based ethanol. [102] Corn-derived ethanol costs 30% more because the corn starch must first be converted to sugar before distillation into ...
The energy content of ethanol is 76,100 BTU/US gal (5.89 kilowatt-hours per litre), compared to 114,100 BTU/US gal (8.83 kWh/L) for gasoline. (see chart above) A flex-fuel vehicle will experience about 76% of the fuel mileage MPG when using E85 (85% ethanol) products as compared to 100% gasoline. Simple calculations of the BTU values of the ...
Phase behavior Triple point: 150 K (−123 °C), 0.00043 Pa Critical point: 514 K (241 °C), 63 bar Std enthalpy change of fusion, Δ fus H o +4.9 kJ/mol
Specific energy is energy per unit mass, which is used to describe the chemical energy content of a fuel, expressed in SI units as joule per kilogram (J/kg) or equivalent units. [1] Energy density is the amount of chemical energy per unit volume of the fuel, expressed in SI units as joule per litre (J/L) or equivalent units. [2]