Search results
Results From The WOW.Com Content Network
The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. Its introduction allowed many principal concepts of thermodynamics to be established. Its introduction allowed many principal concepts of thermodynamics to be established.
Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation. The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations .
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.
At the molecular level, gas dynamics is a study of the kinetic theory of gases, often leading to the study of gas diffusion, statistical mechanics, chemical thermodynamics and non-equilibrium thermodynamics. [2] Gas dynamics is synonymous with aerodynamics when the gas field is air and the subject of study is flight.
The kinetic theory of gases allows accurate calculation of the temperature-variation of gaseous viscosity. The theoretical basis of the kinetic theory is given by the Boltzmann equation and Chapman–Enskog theory, which allow accurate statistical modeling of molecular trajectories.
Kinetic theory may refer to: Kinetic theory of matter: A general account of the properties of matter, including solids liquids and gases, based around the idea that heat or temperature is a manifestation of atoms and molecules in constant agitation. Kinetic theory of gases, an account of gas properties in terms of motion and interaction of ...
At the end of the 19th century, later developments from scientists like August Krönig, Rudolf Clausius, James Clerk Maxwell and Ludwig Boltzmann, gave rise to the kinetic theory of gases, a microscopic theory from which the ideal gas law can be derived as an statistical result from the movement of atoms/molecules in a gas.
Thermal physics, generally speaking, is the study of the statistical nature of physical systems from an energetic perspective. Starting with the basics of heat and temperature, thermal physics analyzes the first law of thermodynamics and second law of thermodynamics from the statistical perspective, in terms of the number of microstates corresponding to a given macrostate.