Search results
Results From The WOW.Com Content Network
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
Energy levels are not to scale. A hydrogen atom consists of an electron orbiting its nucleus. The electromagnetic force between the electron and the nuclear proton leads to a set of quantum states for the electron, each with its own energy. These states were visualized by the Bohr model of the hydrogen atom as being
Energy diagram (to scale) of the hydrogen atom for n=2 corrected by the fine structure and magnetic field. First column shows the non-relativistic case (only kinetic energy and Coulomb potential), the relativistic correction to the kinetic energy is added in the second column, the third column includes all of the fine structure, and the fourth ...
A depiction of a hydrogen atom with size of central proton shown, and the atomic diameter shown as about twice the Bohr model radius (image not to scale) The ground state energy level of the electron in a hydrogen atom is −13.6 eV, [24] equivalent to an ultraviolet photon of roughly 91 nm wavelength. [25]
A Grotrian diagram of the hydrogen atom. Only transitions between adjacent columns are allowed, as per the selection rule =. A Grotrian diagram, or term diagram, shows the allowed electronic transitions between the energy levels of atoms. They can be used for one-electron and multi-electron atoms.
This constraint automatically allowed only certain electron energies. The Bohr model of the atom fixed the problem of energy loss from radiation from a ground state (by declaring that there was no state below this), and more importantly explained the origin of spectral lines. The Rutherford–Bohr model of the hydrogen atom
Wavefunctions of a hydrogen atom, showing the probability of finding the electron in the space around the nucleus. Each stationary state defines a specific energy level of the atom. Quantized energy levels result from the wave behavior of particles, which gives a relationship between a particle's energy and its wavelength.