Search results
Results From The WOW.Com Content Network
The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...
Two different reflections in two dimensions generating a rotation. Every simple rotation can be generated by two reflections. Reflections can be specified in n dimensions by giving an (n − 1)-dimensional subspace to reflect in, so a two-dimensional reflection is in a line, a three-dimensional reflection is in a plane, and so on. But this ...
The product of two rotations or two reflections is a rotation; the product of a rotation and a reflection is a reflection. So far, we have considered D n to be a subgroup of O(2), i.e. the group of rotations (about the origin) and reflections (across axes through the origin) of the plane.
Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do.
Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point.
An improper rotation of an object thus produces a rotation of its mirror image. The axis is called the rotation-reflection axis. [6] This is called an n-fold improper rotation if the angle of rotation, before or after reflexion, is 360°/n (where n must be even). [6] There are several different systems for naming individual improper rotations:
In dimension two, every rotation can be decomposed into a product of two reflections. More precisely, a rotation of angle θ is the product of two reflections whose axes form an angle of θ / 2. A product of up to n elementary reflections always suffices to generate any element of O(n). This results immediately from the above canonical form and ...
A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.