When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  3. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    Two different reflections in two dimensions generating a rotation. Every simple rotation can be generated by two reflections. Reflections can be specified in n dimensions by giving an (n − 1)-dimensional subspace to reflect in, so a two-dimensional reflection is in a line, a three-dimensional reflection is in a plane, and so on. But this ...

  4. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The product of two rotations or two reflections is a rotation; the product of a rotation and a reflection is a reflection. So far, we have considered D n to be a subgroup of O(2), i.e. the group of rotations (about the origin) and reflections (across axes through the origin) of the plane.

  5. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do.

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point.

  7. Improper rotation - Wikipedia

    en.wikipedia.org/wiki/Improper_rotation

    An improper rotation of an object thus produces a rotation of its mirror image. The axis is called the rotation-reflection axis. [6] This is called an n-fold improper rotation if the angle of rotation, before or after reflexion, is 360°/n (where n must be even). [6] There are several different systems for naming individual improper rotations:

  8. Orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_group

    In dimension two, every rotation can be decomposed into a product of two reflections. More precisely, a rotation of angle θ is the product of two reflections whose axes form an angle of θ / 2. A product of up to n elementary reflections always suffices to generate any element of O(n). This results immediately from the above canonical form and ...

  9. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.