Search results
Results From The WOW.Com Content Network
A study of a single winter rye plant grown for four months in one cubic foot (0.0283 cubic meters) of loam soil showed that the plant developed 13,800,000 roots, a total of 620 km in length with 237 square meters in surface area; and 14 billion root hairs of 10,620 km total length and 400 square meters total area; for a total surface area of ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
the soil's hydraulic conductivity (Ka and Kb) by measurements; the depth of the bottom of the aquifer (Di) the design drain spacing (L) can be found from the equation in dependence of the drain depth (Dd) and drain radius (r). Drainage criteria
Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as a ratio, which can range from 0 (completely dry) to the value of the materials' porosity at saturation.
Specific volume is a property of materials, defined as the number of cubic meters occupied by one kilogram of a particular substance. The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance.
This procedure allows water to move through the soil under a steady state head condition while the volume of water flowing through the soil specimen is measured over a period of time. By knowing the volume Δ V of water measured in a time Δ t , over a specimen of length L and cross-sectional area A , as well as the head h , the hydraulic ...
An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...
The concept, put forward by Frank Veihmeyer and Arthur Hendrickson, [3] assumed that the water readily available to plants is the difference between the soil water content at field capacity (θ fc) and permanent wilting point (θ pwp): θ a ≡ θ fc − θ pwp