Search results
Results From The WOW.Com Content Network
Sliding friction (also called kinetic friction) is a contact force that resists the sliding motion of two objects or an object and a surface. Sliding friction is almost always less than that of static friction; this is why it is easier to move an object once it starts moving rather than to get the object to begin moving from a rest position.
Gliding allows microorganisms to travel along the surface of low aqueous films. The mechanisms of this motility are only partially known. Twitching motility also allows microorganisms to travel along a surface, but this type of movement is jerky and uses pili as its means of transport. Bacterial gliding is a type of gliding motility that can ...
Twitching depends on the extension, attachment to a surface, and retraction of type IV pili which pull the cell forwards in a manner similar to the action of a grappling hook, providing energy to move the cell forward. Gliding uses different motor complexes, such as the focal adhesion complexes of Myxococcus.
That is, the result of moving a shape around, enlarging it, rotating it, or reflecting it in a mirror is the same shape as the original, and not a distinct shape. Many two-dimensional geometric shapes can be defined by a set of points or vertices and lines connecting the points in a closed chain, as well as the resulting interior points.
Lubricated friction is a case of fluid friction where a fluid separates two solid surfaces. Lubrication is a technique employed to reduce wear of one or both surfaces in close proximity moving relative to each another by interposing a substance called a lubricant between the surfaces.
The surface of a flag in the wind is an example of a deforming manifold. The calculus of moving surfaces ( CMS ) [ 1 ] is an extension of the classical tensor calculus to deforming manifolds . Central to the CMS is the tensorial time derivative ∇ ˙ {\displaystyle {\dot {\nabla }}} whose original definition [ 2 ] was put forth by Jacques ...
Most moving stones range from about 15 to 46 cm (6 to 18 in) in diameter. Stones with rough bottoms leave straight striated tracks, while those with smooth bottoms tend to wander. Stones sometimes turn over, exposing another edge to the ground and leaving a different track in the stone's wake. Trails differ in both direction and length.
This process is in different stages for different parts of the contact area. If the overall motion of the bodies is constant, then an overall steady state may be attained. Here the state of each surface particle is varying in time, but the overall distribution can be constant.