Ad
related to: scale vector calculator calculus 3
Search results
Results From The WOW.Com Content Network
A scale factor is usually a decimal which scales, or multiplies, some quantity. In the equation y = Cx, C is the scale factor for x. C is also the coefficient of x, and may be called the constant of proportionality of y to x. For example, doubling distances corresponds to a scale factor of two for distance, while cutting a cake in half results ...
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.
A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
A vector v (red) represented by • a vector basis (yellow, left: e 1, e 2, e 3), tangent vectors to coordinate curves (black) and • a covector basis or cobasis (blue, right: e 1, e 2, e 3), normal vectors to coordinate surfaces (grey) in general (not necessarily orthogonal) curvilinear coordinates (q 1, q 2, q 3). The basis and cobasis do ...
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:
A lamellar vector field is a special case given by vector fields with zero curl. The adjective "lamellar" derives from the noun "lamella", which means a thin layer. The lamellae to which "lamellar vector field" refers are the surfaces of constant potential, or in the complex case, the surfaces orthogonal to the vector field.