When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

  3. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  4. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    The new axiom is Lobachevsky's parallel postulate (also known as the characteristic postulate of hyperbolic geometry): [75] Through a point not on a given line there exists (in the plane determined by this point and line) at least two lines which do not meet the given line. With this addition, the axiom system is now complete.

  5. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    This method resembles the modern axiomatic method but with a big philosophical difference: axioms and postulates were supposed to be true, being either self-evident or resulting from experiments, while no other truth than the correctness of the proof is involved in the axiomatic method. So, for Aristotle, a proved theorem is true, while in the ...

  6. First principle - Wikipedia

    en.wikipedia.org/wiki/First_principle

    A first principle is an axiom that cannot be deduced from any other within that system. The classic example is that of Euclid's Elements; its hundreds of geometric propositions can be deduced from a set of definitions, postulates, and primitive notions: all three types constitute first principles.

  7. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    Axioms of continuity and "betweenness" are also optional, for example, discrete geometries may be created by discarding or modifying them. Following the Erlangen program of Klein , the nature of any given geometry can be seen as the connection between symmetry and the content of the propositions, rather than the style of development.

  8. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line l and a point A, which is not on l, there is exactly one line through A that does not intersect l.

  9. Pasch's axiom - Wikipedia

    en.wikipedia.org/wiki/Pasch's_axiom

    David Hilbert uses Pasch's axiom in his book Foundations of Geometry which provides an axiomatic basis for Euclidean geometry. Depending upon the edition, it is numbered either II.4 or II.5. [7] His statement is given above. In Hilbert's treatment, this axiom appears in the section concerning axioms of order and is referred to as a plane axiom ...