Search results
Results From The WOW.Com Content Network
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2.It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. [7] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds).
of formation, Δ f H o gas +52.47 kJ/mol ... Table data obtained from CRC Handbook of Chemistry and Physics, 44th ed. log 10 of ethylene vapor pressure. Uses formula: ...
The reaction occurs easier with the last two acids: (CH 2 CH 2)O + HCl → HO–CH 2 CH 2 –Cl. The reaction with these acids competes with the acid-catalyzed hydration of ethylene oxide; therefore, there is always a by-product of ethylene glycol with an admixture of diethylene glycol. For a cleaner product, the reaction is conducted in the ...
The cycle is concerned with the formation of an ionic compound from the reaction of a metal (often a Group I or Group II element) with a halogen or other non-metallic element such as oxygen. Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured ...
A chemical reaction may undergo different reaction mechanisms at different temperatures. [13] In this case, a Van 't Hoff plot with two or more linear fits may be exploited. Each linear fit has a different slope and intercept, which indicates different changes in enthalpy and entropy for each distinct mechanisms.
In the symmetrical reaction the cleavage between the CH 2 in both reactants leads to one product formation. Though difficult to see, one can see [clarify] that the neighboring carbons are not changed as the rearrangement occurs. In the asymmetrical reaction the hydroxyl–methyl bond is cleaved and rearranged on the ethyl moiety of the ...
Structure of (acac)Rh(C 2 H 4)(C 2 F 4), distances (red) in picometers. [3]The bonding between alkenes and transition metals is described by the Dewar–Chatt–Duncanson model, which involves donation of electrons in the pi-orbital on the alkene to empty orbitals on the metal.
One approach to improving chemical reactions is the understanding of the underlying reaction mechanism. time-resolved spectroscopic techniques can be used to follow the dynamics of the chemical reaction. This technique requires a trigger for initiating the process, which is in most cases illumination of the compound.